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Abstract

Research into automatic image processing of digital plot photography has increased in recent

years. However, in most studies only overall vegetation cover is estimated. In arid regions of the

southwestern US, grass cover is typically a mixture of green and senescent plant material and it is

important to be able to quantify both types of vegetation. Our objectives were to develop an image

analysis approach for estimating fractional cover of green and senescent vegetation using very high-

resolution ground photography, and to compare image-based estimates with line-point-intercept

(LPI) measures. We acquired ground photography for 50 plots using an eight megapixel digital

camera. The images were transformed from the RGB (red, green, blue) color space to the IHS

(intensity, hue, saturation) color space. We used an object-based image analysis approach to classify

the images into soil, shadow, green vegetation, and senescent vegetation. Shadow and soil were

effectively masked out by using the intensity and saturation bands, and a nearest neighbor

classification was used to separate green and senescent vegetation using intensity, hue and saturation

as well as visible bands. Correlation coefficients between LPI- and image-based estimates for green

and senescent vegetation were 0.88 and 0.95 respectively. Image analysis underestimated total and
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senescent vegetation by approximately 5%. The object-based image-processing approach is less labor

and time intensive than the LPI method, is a viable alternative to ground-based methods, and has the

potential to be incorporated into rangeland monitoring protocols.

Published by Elsevier Ltd.

Keywords: Rangeland vegetation; Rangeland monitoring; Very high-resolution images; Object-based image

analysis
1. Introduction

Research focused on image analysis techniques for measuring vegetation cover and/or
bare soil from digital ground photography is becoming increasingly common (Bennett
et al., 2000; Louhaichi et al., 2001; Richardson et al., 2001; Booth et al., 2005), although
methods developed by these efforts have yet to be widely adopted (Booth et al., 2006).
Most studies using image processing only estimate total vegetation cover of the plot. In
order to assess rangeland condition and trend, and to determine the nutritional value of
vegetation for livestock and wildlife grazing, rangeland managers need to be able to
measure fractional cover values for bare soil and vegetation, as well as fractional
composition of green (live) and senescent (dead) vegetation. Ground-based plot estimates
are a common tool for assessing rangeland vegetation cover (Herrick et al., 2005), but are
time consuming and labor intensive (Herrick et al., 2006). Image-based methods can be
faster once fully developed, and they have the added advantage that photos can be
acquired quickly for different times to assess vegetation dynamics for monitoring
purposes. In addition, photos are easily archived; thus, conserving maximal data for future
change analyses.
At the USDA-ARS Jornada Experimental Range in southern New Mexico, ongoing

research is aimed at relating ground-based observations to remotely sensed data at various
scales (Laliberte et al., 2004, in press). Our goal for this study was to develop an image
analysis approach for quantifying vegetation characteristics from very high-resolution
digital photography. Specific objectives were to quantify bare soil and vegetation cover, to
separate and quantify green and senescent vegetation, and to compare cover estimates
from image analysis with those obtained from line-point-intercept (LPI) data collected on
the ground.
In arid rangelands, green and senescent plant materials are often intermixed and difficult

to differentiate, especially with digital imagery having only three bands (red, green, blue or
RGB) and lacking a near infrared band. Band inter-correlation is relatively high in the
RGB space, but is reduced when images are transformed to the intensity-hue-saturation
(IHS) space. The IHS color representation is based on a color sphere rather than a cube as
in the RGB space (Jensen, 2005). Intensity relates to brightness and is represented as the
vertical axis of the sphere. Hue is the dominant wavelength of the color and is represented
as the circumference on the sphere. Saturation is defined as the relative purity of the color
and is represented as the sphere’s radius. The IHS model separates the intensity component
from the color information, while hue and saturation components relate to how humans
perceive color (Jensen, 2005).
Some authors have reported increased accuracy in vegetation analysis using digital

images with IHS transformations rather than the original RGB bands. For example, Tang
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et al. (2000) used a genetic algorithm for segmenting very high-resolution video images i
n the IHS image space for detecting weeds in crops. Hemming and Rath (2001)
segmented and classified digital images using spectral and spatial features in IHS
space. IHS transformations also were used by Ewing and Horton (1999) to estimate
wheat canopy cover and by Karcher and Richardson (2003) for quantifying turf grass
cover.

Digital image analysis of plot photography traditionally was performed using pixel-
based image analysis, whereby each pixel’s digital number is assessed individually. Another
option is object-based image analysis, whereby pixels are aggregated in a first step
(segmentation) into objects that are homogenous with regard to spatial or spectral
characteristics (Ryherd and Woodcock, 1996). Homogeneity in this case refers to
smaller within-object than between-object variance. In a second step, those objects rather
than single pixels are classified. Object-based image analysis is an effective tool for
classification of high-resolution satellite imagery (Herold et al., 2003; Thomas et al., 2003;
Lennartz and Congalton, 2004; Laliberte et al., 2004), but to our knowledge has not been
applied with ground plot photography in rangelands. In ecological studies, object-based
image analysis is advantageous, because this approach allows for detection of landscape
patches, which offers insight into ecological processes (Hay et al., 2002; Burnett and
Blaschke, 2003). Plot photography is an effective tool for detecting changes in patch
structure at a scale that is relevant to many soil and ecological processes, including wind
erosion (Okin et al., 2006). It is also an appropriate scale for vegetation classification
(Booth et al., 2005) and analyses of changes in the spatial pattern of vegetation
(Bestelmeyer et al., 2006).
2. Methods

2.1. Study Area

Our research was conducted at the Jornada Experimental Range (JER; approx.
elevation 1200m), which is located approximately 40 km northeast of Las Cruces,
New Mexico in the northern Chihuahuan Desert. Average monthly maximum
temperatures range from 13 1C in January to 36 1C in June, and mean annual precipitation
is 241mm of which more than 50% falls during July, August and September. Historically,
most of this area was a desert grassland, but shrub encroachment by honey mesquite
(Prosopis glandulosa Torr.), creosotebush (Larrea tridentata (Sess. & Moc. ex DC)
Cov.), and tarbush (Flourensia cernua DC.) has led to a conversion of much of the area
to desert scrub (Gibbens et al., 2005). Our study was conducted in a 1200 ha
pasture, which consists of most vegetation communities found within the Jornada
del Muerto basin floor. Dominant grass species included black grama (Bouteloua eriopoda

(Torrey) Torrey), tobosa (Pleuraphis mutica Buckley), dropseed (Sporobolus spp.),
threeawn (Aristida spp.), and burrograss (Scleropogon brevifolius Phil.). Dominant
shrub species included honey mesquite, four-wing saltbush (Atriplex canescens (Pursh)
Nutt.), soap-tree yucca (Yucca elata Engleman.), mormon tea (Ephedra torreyana

(Wats.), and broom snakeweed (Gutierrezia sarothrae (Pursh) Britt. & Rusby). While black
grama and tobosa tend to occur in pure stands, dropseed and threeawn are often
intermixed.
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2.2. LPI sampling and ground photography acquisition

A stratified random field sampling approach was used to locate 50 plots within five
dominant vegetation communities: black grama, tobosa, mixed grasses, broom snakeweed,
and bare soil. Communities dominated by large shrubs were not included in this study. We
used an eight megapixel Canon Powershot Pro 1 digital camera fixed to an aluminum pole
to acquire a ground photo for each plot from a height of 2.8m. The resulting images had a
size of 3264� 2448 pixels, covered a 2.5m� 3.5m plot and had an approximate ground
resolution (pixel size) of 1mm. Images were acquired between 9:30 am and 3:30 pm to
minimize the influence of shadow. Ground sampling was performed using LPI techniques
described by Herrick et al. (2005), using four, 2.5m lines located 0.25m from the edge of
the plot and 1m apart. Points were sampled every 10 cm, for a total of 104 points per plot.
The contact area of the point of the pin was approximately 1mm square. Foliar cover was
calculated for soil, green vegetation, senescent vegetation, and by species for each line.
Data from those lines were averaged for the plot. We used only the first (top) intercept that
touched vegetation and/or soil, thus accurately representing the aerial view in the digital
image.

2.3. Image segmentation and analysis

The images were imported into Erdas Imagine 8.7 (Leica Geosystems GIS and Mapping,
2003) and converted from RGB to IHS space. Subsequent analysis of RGB and IHS
images was conducted using eCognition, an object-based image analysis program
(Definiens, 2003). In this approach, an image is segmented into homogeneous areas based
on three parameters: scale, color (spectral information), and shape. Color and shape can be
weighted from zero to one. Within the shape setting, smoothness or compactness can be
defined and weighted from zero to one. The scale parameter is unit-less and controls the
relative size of image objects (polygon or segment), with a larger scale parameter resulting
in larger image objects. The images were segmented at a scale parameter of 5, and color/
shape and smoothness/compactness settings of 0.9/0.1 and 0.5/0.5, respectively.
Analysis in eCognition can be conducted using either a nearest-neighbor classification

based on selected samples (similar to a supervised classification in pixel-based analysis), or
with membership functions, representing a rule-base classification. For example, the class
bare ground may be described as all values in band X greater than a, where a is the mean
value of all pixels representing an image object. A general rule in eCognition is that
membership functions are appropriate if a class is relatively easy to separate from another
and can be described with one or a few rules. Nearest-neighbor classification is more
appropriate when classes are more difficult to separate from each other, because this
approach is better suited for evaluating correlation between object features and for
describing a multidimensional feature space (Definiens, 2003). For a nearest-neighbor
classification, suitable samples have to be selected for each class.
In this case, we chose a combination of membership functions and nearest-neighbor

classification and used a masking approach, which allowed for classifying easily
identifiable classes first and more difficult ones later. We classified Shadow first by
determining its threshold value in the intensity band using ‘‘Feature View’’, a tool that
allows for visualizing a feature (image band or ratio of bands) and determining threshold
values for classification. (Note: in this paper, senescent vegetation, green vegetation, soil,
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and shadow are in Italics when referring to class names in eCognition.) All other image
objects were grouped into the Not Shadow class by using a membership function with
inverted similarity to the class Shadow. The inverted similarity is a rule describing all image
objects that are ‘‘not in the class shadow’’. All objects in the Not Shadow class were
classified into either Soil by determining the soil threshold values in the saturation and hue
bands, or into Vegetation (which equaled ‘‘not in the class soil’’) by using a membership
function with inverted similarity to the class Soil. At this point, only Vegetation remained
to be classified and confusion between Senescent Vegetation and Soil was therefore
eliminated. Green Vegetation and Senescent Vegetation were classified by using a nearest
neighbor approach using 10–15 sample objects for each class (Fig. 1).

In eCognition’s nearest neighbor classification, samples are selected, the image is
classified, and in a subsequent step, wrongly assigned objects or unclassified objects are
assigned to the correct classes. This step can be repeated if needed to stabilize the
classification. The choice of input features was determined both visually and using the
‘‘Feature Space Optimization’’ (FSO) tool. This tool evaluates the distance in feature space
between the samples of classes, and selects layer combinations that result in the best class
separation distance. We used the FSO tool on six test images. The choice of features was
consistent across the test images; therefore, we selected the 13 selected features for all 50
images. Those features included the mean and ratio of each input band (red, green, blue,
intensity, hue, saturation), and the maximum difference. The mean of an input band in
eCognition is calculated as the mean value of all pixels forming an image object. The ratio
is calculated as the band’s mean value for an image object divided by the sum of all band
mean values. The maximum difference is the maximum value minus the minimum value of
an image object.

Part of the analysis was automated by using a protocol, similar to a macro, which
segmented the image, loaded the class hierarchy (selected classes), and classified the image
initially. Subsequent fine-tuning of the classification was necessary for adjustment of the
intensity, saturation and hue values for the Shadow and Soil classes, as well as for sample
selection. For all images, percent cover values for the classes Shadow, Soil, Green

Vegetation, and Senescent Vegetation were summarized in eCognition. Correlation and
regression analysis was used to assess the strength of the relationship between image- and
LPI-based estimates.
Fig. 1. Classes and class descriptors used in the image analysis program eCognition. A masking approach was

used. Shadow, Not Shadow, Soil, and Vegetation were classified with membership functions using specific rules.

Green Vegetation and Senescent Vegetation were classified with the nearest-neighbor approach using samples.
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3. Results

3.1. Image analysis

Image transformation from RGB to IHS space was an effective tool for classification in
this study. The intensity band clearly differentiated Shadow from Non-Shadow in the first
step of the image analysis. The hue and saturation bands were equally effective in
separating Soil and Vegetation in the second step. In plots dominated by black grama and/
or tobosa grasses, the saturation band alone was sufficient for separating Soil and
Vegetation, while in plots with broom snakeweed, the combination of the saturation and
hue bands was more effective. In plots with very sparse vegetation, hue alone was effective
for separating Soil and Vegetation. Except for a few outliers, the mean values for intensity,
hue, and saturation used for thresholding had a relatively narrow range (Table 1). One
outlier for saturation (0.34) occurred in a plot with 94% vegetation cover and another
outlier for saturation (0.06) occurred in a plot with a large amount of shadow. Due to the
narrow range of values for intensity, hue and saturation, we were able to use the
timesaving protocol that resulted in an initial classification and only required subsequent
fine-tuning of the mean values.
Shadow cover ranged from 0.2% to 22.2% with a mean of 6.5%, although 55% of

images had less than 6% shadow. Shadow is always problematic in very high-resolution
images, because it occurs both on the soil surface as well as within the vegetation canopy.
However, shadow was easily classified, and was placed in its own class in this analysis.
Further classification of the vegetation class into Green Vegetation and Senescent

Vegetation was performed with samples and nearest neighbor classification. Image objects
representing green and senescent vegetation were chosen as training samples for the nearest
neighbor classification algorithm. In most images, the smallest overlaps in feature space for
samples chosen for green and senescent vegetation existed in the mean hue, ratio hue and
mean red bands (Fig. 2). This figure is a typical illustration of the separation between green
and senescent vegetation in feature space, even though each image had different values and
ranges in feature space. Given the relatively large overlap in feature space for Green

Vegetation and Senescent Vegetation, the initial masking of shadow and soil areas was an
Table 1

Statistics for mean intensity, hue and saturation values used to threshold shadow, soil and vegetation classes in

eCognition for 50 ground photos

Statistic Mean intensity Mean hue Mean saturation

Average 0.26 145 0.16

Standard deviation 0.04 2 0.05

Median 0.26 146 0.16

Mode 0.23 147 0.17

Minimum 0.13 140 0.06

Maximum 0.34 150 0.34

n 50 36 39

Intensity, hue and saturation are referred to as means because pixels are averaged for image objects. Mean

intensity was used to separate Shadow and Non-Shadow classes, hue and/or saturation were used to separate Soil

and Vegetation classes. Statistics (except n) are expressed in digital numbers (unit-less).
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Fig. 2. Comparison of histograms for selected samples (image objects) of Senescent Vegetation (in black) and

Green Vegetation (in blue). Each column in the histogram represents the sample’s value for each feature. Features

shown are (from top): mean blue, mean green, mean red, mean intensity, mean hue, mean saturation, ratio blue,

ratio green, ratio red, ratio hue.
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appropriate step. Without this approach, added confusion between senescent vegetation
and bright soil would have occurred.

Despite encountering plots of varying vegetation types and total vegetation cover
ranging from 0% to 94% (with a mean of 36.6%)(values from LPI data), our image
classification approach was effective for all conditions. The red, green and blue bands were
highly correlated which did not allow for much differentiation between green and
senescent vegetation, while the intensity, hue and saturation bands were more effective for
this purpose (Fig. 3).

3.2. Comparison of LPI and image analysis

Correlations between LPI-based and image-based cover estimates for total vegetation
cover, soil, green and senescent vegetation were relatively high (Table 2, Fig. 4). The best
correlations were obtained for total vegetation cover and senescent vegetation, while green
vegetation had the lowest correlation coefficient of 0.88. Compared to the LPI estimates,
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Fig. 3. Plot images of tobosa grassland (A) and mixed grassland (B). Shown are: 3-band images in RGB space (a),

3-band images in IHS space (b), classified images (c), and the following single bands: intensity (d), hue (e),

saturation (f), and (for mixed grassland) blue (g), green (h), red (i). Classification colors in (c) represent Soil

(yellow), Shadow (grey), Green Vegetation (dark green), and Senescent Vegetation (light green). Presentation

resolution is 300 dpi (dots per inch).

A.S. Laliberte et al. / Journal of Arid Environments 69 (2007) 1–148
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Table 2

Correlation coefficients, p-values, estimates of mean differences and confidence intervals for comparisons of

percent cover value estimates obtained from image analysis and line-point-intercept sampling

Type of cover Correlation

coefficient

p-value from

paired t-test

Mean difference

(% cover)

95% Confidence

interval (% cover)

Total vegetation cover 0.9556 0.0002 �5.09 �7.56–�2.62

Soil 0.9391 0.2936 �1.46 �4.16–1.24

Green vegetation 0.8803 0.6975 �0.14 �0.87–0.58

Senescent vegetation 0.9523 0.0003 �4.94 �7.46–�2.43

Fig. 4. Scatterplots for percent cover estimates of 50, 2.5m� 3.5m plots using object-based image analysis

acquired 2.8m above the soil surface of each plot and a line-point-intercept method using 4, 2.5m lines within

each plot to assess total vegetation cover (a), soil (b), green vegetation (c), and senescent vegetation (d).

A.S. Laliberte et al. / Journal of Arid Environments 69 (2007) 1–14 9
image analysis underestimated total vegetation cover and senescent vegetation cover by
approximately 5%, while no statistical differences in the mean differences between image
analysis and LPI data were found for soil and green vegetation (using a paired t-test). The
coefficient of variation (CV) was similar for total vegetation, bare soil and senescent
vegetation indicating a similar level of precision for the image analysis and the LPI
methods for these parameters (Table 3). However, LPI measurements generated a higher
CV for green vegetation, suggesting that image-based analyses may be more effective
where it is important to distinguish live from dead foliage in the top canopy layer.

Two outlier plots were detected in the graphs for total vegetation cover, soil and
senescent vegetation (Fig. 4). Both outlier plots greatly differed in values for total cover,
soil and senescent vegetation (i.e., 47% total cover from image analysis, 87% from ground
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Table 4

Time requirements in hours for sampling and analyzing 50 plots for fractional cover with an image-based and line-

point-intercept-based approach

Field work Office work Total

Image-based 5.0a 12.9b 17.9

Ground-based 33.3c 3.0 36.3

Travel time between plots is not included.
aBased on 2 persons at 3min/plot.
bBased on 1 person at 15.5min/image.
cBased on 2 persons at 20min/plot.

Table 3

Average parameter value and coefficient of variation based on image and line-point-intercept measurements

(% cover)

Average Coefficient of variation

Type of cover Image Ground Image Ground

Total vegetation cover 31.5 36.6 75.2 76.6

Soil 61.9 63.4 43.3 44.3

Green vegetation 5.7 5.8 74.2 91.9

Senescent vegetation 25.9 30.8 86.3 88.0

A.S. Laliberte et al. / Journal of Arid Environments 69 (2007) 1–1410
sampling for one of the plots), and we suspected that those two plots measured on the
ground may not have been located in the exact position as the image taken of the plot.
In terms of labor and time involvement, the image-based method required slightly less

than half the time required for the LPI method (Table 4). We did not take into account
travel time between plots, which would be the same for ground sampling or image
acquisition. Times for each plot were averaged. The time consuming part of ground
sampling is the fieldwork, specifically setting up and measuring the plots, and it usually
requires two people. It is possible for one person to conduct LPI sampling, which reduces
field time, but this is often offset by increased fatigue and potentially reduced data quality
associated with simultaneously reading and recording data.
For the image-based method, computer analysis required the most time. In our study,

we used two people to acquire the images and record information, but one person could
perform this task, reducing the total time to 15.4 h.

4. Discussion

This study showed that object-based image analysis using IHS-transformed images is a
viable approach for estimating total cover of vegetation, bare soil, and fractional
components of green and senescent vegetation using very high resolution ground
photography. As others have found, IHS transformation can be very effective for
analyzing vegetation in digital images (Ewing and Horton, 1999; Tang et al., 2000;
Hemming and Rath, 2001). What set our study apart from previous studies was the
use of object-based classification software, which offered more choices in features,
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simple routines for masking and the combination of rule-based and nearest-neighbor
classification.

The intensity, hue and saturation bands were less correlated than the red, green and blue
bands and showed less overlap in the feature space for vegetation classification. We used
the intensity band to mask shadows, which presents a common problem in ground
photography. The saturation and hue bands were effective for separating soil and
vegetation, so that green and senescent vegetation could be classified last in order to
minimize the confusion of senescent vegetation with bright soil areas.

The object-based image analysis approach was also useful because it eliminated the ‘‘salt
and pepper effect’’ common in pixel-based analysis of very high-resolution images.
Adjacent areas of similar vegetation were automatically merged in the segmentation
process. Partial automation of the image analysis process through use of protocols in
eCognition was helpful in reducing time spent on each image. Manual fine-tuning of
threshold values for shadow and soil was straightforward and, except for a few outliers,
values did not differ much between images. We hope to increase the level of automation
further as new versions of the software are released.

Correlations between image-based and LPI-based estimates of cover were relatively
high, ranging from 0.88 to 0.96. We did not detect statistical differences in the estimates for
soil and green vegetation. Booth et al. (2005) found that image analysis using the program
VegMeasure (Johnson et al., 2003) estimated less green cover than estimates based on a
100-point laser frame at two study sites and obtained similar estimates at another site.
Those authors attributed the discrepancies to limited, scattered green growth. In our plots,
green vegetation was limited, scattered, and often mixed with senescent vegetation; and it
appeared that the addition of the intensity, hue, and saturation bands was more effective
than the use of the red, green and blue bands alone.

One of the difficulties in assessing whether image-based or ground-based estimates of
fractional cover are more accurate is that we do not know the value of the true population.
Booth et al. (2006) performed an experiment by using a poster of an image classification as
a model of the true population and comparing it with several methods of ground-based
percent cover estimates. The correlation coefficient of the model with LPI data in that
study was 0.98. The size of the sampling point was given by Booth et al. (2006) as a 0.5mm
mark on a tape, while our pinpoint size was 1mm. In addition, Booth et al. (2006) worked
in a 2-dimensional system, while we were dealing with a 3-dimensional system. Therefore,
direct comparisons of the correlations between LPI and image estimates are not possible,
but have to be examined in context with the experimental setup.

It was expected that image analysis would overestimate cover because eCognition
merges adjacent homogenous areas into image objects, including small spaces between
plant canopy elements. LPI sampling does not include these spaces in its estimate of foliar
cover. This error should decline as image resolution increases.

Our underestimation of total vegetation cover by approximately 5% can most likely be
attributed to shadow influences. Shadow occurred both within the vegetation canopy,
where it can be confused with dark green vegetation, as well as in the surrounding soil as
shadow at the boundary of the plant canopy. Creating a separate class for shadow solved
part of the problem, although we noticed that the discrepancies between percent cover
values from ground and image-based analysis could mostly be attributed to shadow.
Shadows can potentially be reduced or eliminated by shading the plot, which would
improve the quality of the imagery (Booth et al., 2004), but would also increase costs.
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Because our plot was larger than the 1m2 plots used by Booth et al. (2004), shading the
plot would be more difficult and require additional workers. Another option would be to
use a flash, although we are unsure how well this would work in intense light common
to most deserts. Because our images were acquired during the last 2 weeks of October to
coincide with a satellite overpass (the images were also used in another study), the sun
angle was relatively low. If images can be acquired at times of the year with a higher sun
angle, less shadow would be encountered. However, both forage value and canopy cover
estimates are often required at various times throughout the year.
The image analysis method was less labor intensive and time consuming than the LPI

method, and further labor saving could be achieved by only using one person for image
acquisition. On the other hand, personnel require more experience with image analysis
procedures. Our image analysis method using eCognition took more time for analysing
each image (15min) compared to using VegMeasure (1min/image+30–40min for
calibrating 25 images) in the study by Booth et al. (2005). The advantage of our technique
is that the object-based segmentation approach has the ability to mask classes, and added
flexibility when combining band means and ratios with membership functions in a fuzzy
classification approach. In addition, other spectral, spatial, and contextual features can be
included in these analyses. For a binary map output into vegetation and bare soil, the use
of VegMeasure for image analysis of ground photos would be less time intensive. If,
however, more classes and a larger number of features for the input bands are desired, the
use of object-based image analysis is more appropriate. Our efforts will be directed at
improving data flow and level of automation in image analysis, both of which will reduce
cost.
Another improvement would be the addition of vegetation height information from

remotely sensed data acquired with laser rangefinders or LiDAR (Light Detection and
Ranging). Although our approach provided a good 2-dimensional view of canopy
composition, 3-dimensional data would be even more informative for rangeland mapping,
but also more costly.
Correlation coefficients between image- and LPI-based approaches are large enough to

warrant further testing of this procedure as a remote sensing component of rangeland
monitoring. The ground-based images could represent the finest scale in a series of
multiscale images that tie ground-based rangeland measurements to landscape-scale
assessments. Those linkages across spatial scales are important and can add a remote
sensing component to the assessment of rangeland condition and trend (Herrick et al.,
2006).

5. Conclusions

An image-based approach using object-oriented classification from very high resolution
digital ground photography was an effective technique for estimating fractional cover of
vegetation and soil and for separating green and senescent vegetation. This method
showed high correlation with LPI data and required less time and labor than the LPI
method. An added advantage is the establishment of permanent photographic plots that
can be used to detect vegetation changes over time.
Points of consideration are the need for personnel with image analysis experience and

software and hardware requirements for data flow and analysis, although once image
analysis programs are purchased, they can be used for other purposes. We recommend
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similar studies within differing vegetation communities to assess the effectiveness of this
approach across an array of conditions. We hope to incorporate this approach in a
multiscale image analysis study to pave the way for increased incorporation of remote
sensing in rangeland monitoring and assessment.
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